
Mount Sinai researchers have published one of the first studies to link changes in blood gene expression during COVID-19 to post-acute sequelae of SARS-CoV-2 infection, also known as name “long COVID”, in patients more than a year later.. they were hospitalized with severe COVID-19. Credit: Nature Medicine/Icahn School of Medicine at Mount Sinai
Mount Sinai researchers have published one of the first studies to link changes in blood gene expression during pregnancy[{” attribute=””>COVID-19 with “long COVID” in patients more than a year after they were hospitalized with severe COVID-19. Long COVID is the common name used for what is known more technically as post-acute sequelae of
The research team identified, among other findings, two molecularly distinct subsets of long COVID symptoms with opposing gene expression patterns during acute COVID-19 in
“For long COVID symptoms, like smell or taste problems, connecting antibody gene expression in plasma cells with the actual levels of antibodies against the SARS-CoV-2 spike protein demonstrates a direct link to the body’s response to the virus,” said lead author Ryan C. Thompson, PhD, Data Science Analyst at The Charles Bronfman Institute for Personalized Medicine. “On the other hand, the gene expression pattern for lung problems does not match up with SARS-CoV-2-specific antibody levels, highlighting the different immune processes leading to long COVID that are triggered by COVID-19.”
The team said long COVID still remains poorly defined and future studies should take the initial stage of infection into account to more comprehensively characterize the molecular processes of long COVID and identify biomarkers that can help predict, treat, and prevent prolonged symptoms.
“Our findings show there is the potential to use data from the infection stage to predict what might happen to the patient months later,” said co-corresponding author Alexander W. Charney, MD, PhD, Associate Professor of Genetics and Genomic Sciences, and Co-Director of The Charles Bronfman Institute for Personalized Medicine. “We should not ignore the infection phase in research on long COVID—this is clearly a critical window of time where the body’s response to SARS-CoV-2 might be setting the stage for what is to come.”
Reference: “Molecular states during acute COVID-19 reveal distinct etiologies of long-term sequelae” by Ryan C. Thompson, Nicole W. Simons, Lillian Wilkins, Esther Cheng, Diane Marie Del Valle, Gabriel E. Hoffman, Carlo Cervia, Brian Fennessy, Konstantinos Mouskas, Nancy J. Francoeur, Jessica S. Johnson, Lauren Lepow, Jessica Le Berichel, Christie Chang, Aviva G. Beckmann, Ying-chih Wang, Kai Nie, Nicholas Zaki, Kevin Tuballes, Vanessa Barcessat, Mario A. Cedillo, Dan Yuan, Laura Huckins, Panos Roussos, Thomas U. Marron, The Mount Sinai COVID-19 Biobank Team, Benjamin S. Glicksberg, Girish Nadkarni, James R. Heath, Edgar Gonzalez-Kozlova, Onur Boyman, Seunghee Kim-Schulze, Robert Sebra, Miriam Merad, Sacha Gnjatic, Eric E. Schadt, Alexander W. Charney and Noam D. Beckmann, 8 December 2022, Nature Medicine.
DOI: 10.1038/s41591-022-02107-4
The University Hospital of Zurich, University of Zurich,
0 Comments